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ABSTRACT:

In the paper, the coupled 1D Zakharov equation is considered as the model equation for wave-wave
interaction in ionic media. A finite difference scheme is derived for the model equations. A new six point
scheme, which is equivalent to the multi-symplectic integrator, is derived. The numerical simulation is
also presented for the model equations.
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1. INTRODUCTION:
Wave-wave interaction is an important problem for both physical and mathematical reasons. Physically,
the wave-wave interaction or the wave collisions are common phenomena in science and engineering for
both solitary and non-solitary waves. Mathematically solitary wave collision is a major branch of
nonlinear wave interaction in ionic media. Its application can be found in many areas of mathematics and
physics, including nonlinear optics and plasma physics [1,11,12]. Much work has been done on
interactions in large array of physical systems. Various interaction scenarios such as transmission,
reflection, annihilation, trapping, creation of solitary waves and even mutual spiralling have been
reported. However in their numerical simulations, in order to keep the accuracy, there are many
constraints. Moreover they neglect many properties of the system, such as energy conservation,
momentum conservation, etc. Several attempts were done to solve the above mentioned coupled 1D
nonlinear Schrédinger system and it is solved both analytically and numerically.
Recently, specification has been paid to multi-symplectic geometry [2—4,8]. Bridge and Reich introduced
the concept of multi-symplectic integrator in the form of finite difference scheme for some conservative
PDEs [5,9,10]. The theoretical results indicated that it is a strictly local concept and can be formulated in
the form of finite difference scheme. Thus the multi-symplectic integrator has excellent local invariant
conserving properties [13,15,16]. The CNLS system has multi-symplectic structure; therefore we can
apply this approach to obtain multi-symplectic integrator in difference equations form. In the paper, we
discretize the system with finite difference schemes to show the multi-symplectic structure of CNLS
system. We prove the advantage of the multi-symplectic structure of CNLS system by numerical
simulations. In Section 2, We derived a six point difference scheme which is equivalent to multi-
symplectic integrator for coupled nonlinear Schrodinger system. In Section 3, we investigate the
conservation property of coupled nonlinear Schrédinger system. In Section 4, numerical simulations are
reported to couple nonlinear Schrédinger system.
The Coupled Partial Differential Equations of Zakharov equation type is given by
iE, + E,, —nE =0,

n, —n, —|E[.°> =0

Here, E(x,t) is the slowly varying envelope of the high frequency field, and n is the density of the media
or ions in media. These Zakharov equations can be approximated by Nonlinear Schrédinger Equation.

Where  E = p(x,t)+iq(x, y)7 = p(xt)+i&(x,y)
We have
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a — P =(a& — pu)

P, + O = (P& +que)

tq — t15 — (P2 + (@), )=0
gtt_fxx =0

Introducing the canonical momenta

p,=b,q,=a u =d,g =c
m=eg="1.9=(p*) h=(a),

The above system can be written in the following form
Kz, + Lz, =V,S(z)

is multi-symplectic in nature with the state variables

z=(p,a.b,a & d,ce f,g,h p?,g°) eR®

The system is multi-symplectic in the sense that K is a skew-symmetric matrix representative of the t
direction and L is a skew-symmetric matrix representative of the x direction. S represents a Hamiltonian
function

G — Po =(£0—pu); p+0, =(PS+qu); p,=b;q,=a
ﬂn_ﬂxx_((p)ix_'_(q)ix):o
étt_ggxx:();:ux:d ;gx:C;/uI:e;ét:f

(), =i (), =1
and we get
o —b, =(&q-pu); p+a,=(pE+qu)

p,=b; g =2a;&—d, —(g,+h)=0; fi-¢,=0
=854 =it (), =00,

So that
v,S(z)=(kp.kq,b,a,sp,sq,d,c.e, f,g,h, p>,q° )

kp=(&q—pu); ka=(p&+qu);p,=b;q,=a;
sp=0; sq=0; i, =d; & =cC; 1y =€;
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Using midpoint difference scheme to discretize multi-symplectic CNLS system, we can get

qln++1}2 qln+]/2 b|n_;j/2 b|n+:l/2 I A A
— = — 1
— — ER) (1)
pn++l anr an++:l/2 an+1/2 A
e Pz B A (pé+qa) @
n+1/2 pn+J/2 )
1+1 ~ I blrl:;/z (3)
n+1/2 n+1/2
q 1+1 qu aInJ:;;/ZZ (4)
elnjz e|n+1/2 d|n++1]/2 d|n+1/2 _ |n++1]/2 - |n+]/2 thf/z hlnﬂ/2 -0 )
At AX AX AX
f|21+/12 flye el 2 —g¥?
= (6)
At AX
/Jln;Ll/2 — ﬂln+l/2 — g2 v
AX 1+1/2 ( )
n+1/2 n+1/2
1+1 _ gl _ Cn+:|,/2
AX - 1+1/2 (8)
1
/Ulr:/z _:Llln+:l,/2 __n+1y2
At — eI+1/2 (9)
§n+1 _§n
= (10)
( )|+]/2 (p )|+1/2 _ gn+il/2
1+1/2
+1
(q2I+1/2 — (qZIH/Z — QY2
AX 1+1/2
n+y2 a n1/2A n1/2 n+1/2
,Ll :uIJ:]_/Z = ql+4]_/2 ! IJS/Z '5 §I+4]_/2

From (1), (3), we eliminate b. So we can get

qITrliZ C1|+1/2 + qlTsl/z qlrls/z B 2(p|n++2]/2 -2 p.”ff/z + p|n+]/2)
At (Ax)2 (11)

2 2 2 2 2 2 2 2
(lrg/j/z |r:/1/2 Mrl?}/z |n+?//2) (lnfgj//z |n+g]//2 77,'12]//2 pln++31//2)

From (2), (4), we eliminate a. So we can get

n+ n+ n +1/2 +1/2 +1/2
p|+1}2 p|+1/2 + p|+3l/2 p|+3/2 n 2( |n+2 o 2q|n+1 qn )
At ( A)()2
2 2 2 2 2 2 2 2
(5 |rl+1/]/2 .TS}/z |rl+1/1/2 |n+2}/2 ) (‘f |T§}/2 |n++31//2 + MTsj//z qlrlug//z ) (12)
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we eliminate e and d. Also g&h.So we can get

[M”ff - 243 +ML]_[MT§ - 24y +ﬂ.””j_[(pz o 1 i e 1 e S

(atf (A (ax (A (13)
we eliminate c and f so we can get
2 1 1 1 1
|n+; — 25:5 + §|rl1 _ |T2 — 25."& + §|n+

=0 (14)

(At) (Ax)’

Multiply (12) with i. And adding Eq. (11) then we can get

i (E|*+zn+l + 2E|*+1n+1 + E|*n+1 )_ (Elizn + 2E|*+1rI + E|*n )
2At
e S .
(ax)’
R (| N eon e | . o0 L on¥ (15)
= _%((Em/z +Epp lX77|+1/2 T2 1)"’ (E|+3/2 +E3 lX’7l+3/z 132 1))
Conjugating Eqg. (15)
i (E|n++zl + 2E|n++1l + E|n+l)_ (E|n+2 + 2E|n+1 + Eln)
2At
+ (E|n+z + E|T21)_ Z(E{u ';2E|n:11)+ (Eln + E|n+l)
AX
1 16
= 2 ((E|n+1/2 + E|T3/12 X’?lnu/z + 77|T1}2)+ (E|n+3/2 + E|n++3;z X77|n+3/2 + 77|n++311/z )) (10
Multiply (14) with i. And adding Eq. (13) then we can get
N+ 2 n+. 2 N+ 2
(77|n++12 —2n0 +77|n+1)_ (77|n++21 -2 +77|n+1)_ Bl —2EL| +E™ -0 (17)
(at)’ (Ax)’ (Ax)’

4. NUMERICAL SIMULATION

In this section, we present the numerical result of the CNLS system using the multi-symplectic integrator.
As for conserving quantities, we focus on monitoring the energy conserving properties of the multi-

symplectic integrator.
Now we consider the CNLS system

iy + thx + (| + BlvP)u =0

ive + vex + (W17 + Blul® Yo = 0.
with the initial value

u(x,0) =+2r sech(ryx + %Dﬂ)eﬂ"ﬂxﬁl,
U{I, ﬂ) = ﬁrz Sﬂch{rlx — %DD}E—IV{JI,M

From [11,12], we know, when 8 =1 and B8 = 0, the CNLS system is the integrable system. Here we
consider the interaction of two waves with the initial condition (25). We take the time step A t =0.02 and
aspace step Ax=0.2, -30< x< 30,Dg=25,r=r,=1and Vo=1. In Fig. 1, the computation is done
for 0 < t < 48. We can see after the colliding of the two soliton waves, they move forward in the same

direction and with the same velocity as before
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Fig. 2. Simulation results of the interaction of the two waves with 8 =1

CONCLUSIONS

In this paper, the multi-symplectic formulation for the coupled 1D nonlinear Schrddinger system is
presented. Numerical experiments are also reported. We observe that the multi-symplectic scheme well
simulates the evolution of the solitons and preserves energy conservation well. It has advantage for the
long time computing accuracy and preserving the energy conservation property.
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